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now, we note that kinetic trans oxaphosphetane selectivity
is a logical consequence of an asynchronous cycloaddition
with a relatively advanced, product-like transition state
because the trans oxaphosphetanes are more stable than
the cis isomers in all known examples of isomer intercon-
version.® Since 4 reacts with a kinetic preference for
(E)-alkenes, equilibrium arguments for related Wittig re-
actions of stabilized ylides with aliphatic aldehydes are
neither necessary nor justified.
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Photochemical 1,5-Hydrogen Transfer of
1,2-Disubstituted Acyclic Alkenes. A Novel Entry to
1,6-Diradicals

Summary: Photolysis of 8,y-unsaturated amides 1a and
1b gives cyclization products 2a and 2b via 1,6-diradical
intermediates formed by 1,5-hydrogen transfer.

Sir: Photochemical 1,5-hydrogen transfer of carbonyl
compounds (Norrish type II reaction),! thioketones,? and
1,1-disubstituted alkenes?® is one of the most extensively
studied photoreactions. In these reactions, the hydrogen
transfer via six-membered cyclic transition states gives
1,4-diradicals (Scheme I) which undergo either elimination
or cyclization to give four-membered cyclic compounds.
It is well-known that 1,6-hydrogen transfer is sterically less
favorable than 1,5-hydrogen transfer.*® 1,7-Hydrogen
transfer which gives 1,6-diradicals via eight-membered
cyclic transition states (e-hydrogen abstraction) is ex-
tremely rare because of highly unfavorable conformational
factors.28®  Photochemical 1,5-hydrogen transfer of
1,2-disubstituted acyclic alkenes (or imines) via sterically
favorable six-membered transition states could give 1,6-
diradicals (Scheme I). However, such reactions are hith-
erto unknown presumably because of the presence of rapid
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competitive processes in the excited states, e.g., E-Z
isomerization. We report here the first example of 1,5-
hydrogen transfer of acyclic 1,2-disubstituted alkenes
which produces 1,6-diradicals.’

When N,N-dibenzyl-2,2-dimethyl-4-phenylbut-3-en-
amide (1a) in methanol was irradiated with a low-pressure
mercury lamp,!® 3,3-dimethyl-5,6-diphenyl-1-benzyl-
piperidin-2-one (2a) was obtained. The cyclization product
was a mixture of two stereoisomers which were not com-
pletely separated. The separation was achieved after
conversion into the corresponding piperidines 3a and 4a
by reduction with lithium aluminum hydride (Scheme II).
Photolysis of la in acetonitrile gave a similar result. The
structures of 3a and 4a were confirmed by elemental
analyses and spectral data.!* The stereochemistry of 3a
and 4a was assigned as shown in Scheme II on the basis
of the coupling constant between the vicinal protons on
C-2 and C-3 in the NMR spectrum of 4a (6 Hz). The
stereoselectivity in the photocyclization is explainable in
terms of the stabilities of the products: the major isomer
is presumed to be more stable than the minor one because
both of the phenyl groups are equatorial.

Photolysis of an N-benzyl-N-methyl amide (1b) also
gave the corresponding cyclization products. In this re-
action, no methyl-hydrogen-abstraction products were
detected. Meanwhile, an N,N-diethyl amide (1c) did not
afford cyclization products on irradiation but underwent
only E-Z isomerization.

The formation of 2 is quite reasonably explained in
terms of 1,5-hydrogen transfer followed by cyclization of
the resulting 1,6-diradical 5. The regiospecific benzyl-
hydrogen-abstraction in the photolysis of 1b as well as the
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140.0 (s), 142.8 (8), 143.5 (s); mass spectrum (EI) m/z 355 (M*). 4a: bp
150-160 °C (0.1 Torr (bath temperature)); ‘H NMR (CDCl,) 6 1.09 (s, 3
H, Me), 1.15 (s, 3 H, Me), 1.43 (dd, 1 H, J = 3 Hz and J = 13 Hz, 4-H),
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(M*). The compounds 3a and 4a gave satisfactory analytical data
(0.25%).

© 1987 American Chemical Society



4640 J. Org. Chem. 1987, 52, 4640-4641

Ph Ph
S
Me (CoHgl) 2 Me H
>R
Me 0 Me 0
1c 5

nonreactivity of the methylene hydrogens of l¢ toward
abstraction indicates that stabilization of the 1,6-diradical
5 is necessary for the 1,5-hydrogen transfer.

Much attention has recently been given to investigations
on diradicals.’? 1,6-Diradicals have been generated by
1,7-hydrogen transfer (vide supra) or Norrish type I re-
action (a-cleavage) of cyclohexanones.’®* The results of
the present reactions indicate that 1,5-hydrogen transfer
of 1,2-disubstituted alkenes becomes possible when the
hydrogens are strongly activated by substituents. This
kind of photoreaction provides a novel entry to the 1,6-
diradicals.
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Crystal Engineering a Solid-State Diels-Alder
Reaction

Summary: [3,4-(Methylenedioxy)phenyl]propiolic acid
was predicted to and does in fact crystallize with a short
axis of 4 A and with a packing such that diene and dien-
ophile components in adjacent molecules may participate
in an intermolecular solid-state Diels—Alder reaction.

Sir: Crystal engineering is concerned with the predictive
design of topochemical processes, by understanding the
nature of weak yet directionally specific nonbonded forces.!
Here, we describe such a deliberately “engineered” inter-
molecular solid-state Diels—Alder reaction which seems
quite general and may offer considerable scope for a more
systematic chemistry of molecular solids.

The strategy involved identification of a substance which
may act as either diene or dienophile and further crystallize
in a structure which permits a topochemical 4 + 2 con-
version. Accordingly, substituted phenylpropiolic acids
were considered; not only are they used in self-Diels—Alder
reactions in lignan synthesis?® but the crystallography of
the structurally related trans-cinnamic acids has been
extensively investigated.*®
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Figure 1. View of the crystal structure of [3,4-(methylenedi-
oxy)phenyllpropiolic acid (2) down the 4-A short axis. The
molecular sheets lie parallel to (111). O-H--O and C-H-+O bonds
are indicated.
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Figure 2. Schematic view of a topochemical Diels—-Alder reaction
for acid 2.

The methylenedioxy substituent may “steer” the crystal
structure of a planar aromatic to the 4-A short axis
structure (8 structure) because of in-plane C-H---O in-
teractions which stabilize the formation of two-dimensional
molecular motifs.>® In 3,4-(methylenedioxy)cinnamic acid
(1), for instance, these motifs are planar sheets, stacking
of which leads to the 4-A axis. Additionally, other factors
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being constant, a planar aromatic having a higher C/H
stoichiometric ratio prefers the 8 and related structures
with overlapping, stacked molecules.”  So, 1,4-di-
ethynylnaphthalene, C{,Hg, adopts the § structure,® while
naphthalene, C,;Hg, with a lower C/H ratio, does not.
Analogously, one may extrapolate from the 8 structure of
1, C;,HgO,, that of [3,4-(methylenedioxy)phenylipropiolic
acid (2), C;;HgO,. Both 1 and 2 are planar molecules with
similar volumes, shapes, and functionalities. The smaller
number of hydrogen atoms in 2 was expected, in fact, to
enhance the tendency for 3 structure adoption.

This prediction was confirmed in its crystal structure
analysis.® Figure 1 shows that molecules of 2 form a
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